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Adipose mesenchymal stem cell-derived extracellular 
vesicles reduce glutamate-induced excitotoxicity in the 
retina

Abstract  
Adipose mesenchymal stem cells (ADSCs) have protective effects against glutamate-induced excitotoxicity, but ADSCs are limited in use for treatment of 
optic nerve injury. Studies have shown that the extracellular vesicles (EVs) secreted by ADSCs (ADSC-EVs) not only have the function of ADSCs, but also have 
unique advantages including non-immunogenicity, low probability of abnormal growth, and easy access to target cells. In the present study, we showed 
that intravitreal injection of ADSC-EVs substantially reduced glutamate-induced damage to retinal morphology and electroretinography. In addition, R28 cell 
pretreatment with ADSC-EVs before injury inhibited glutamate-induced overload of intracellular calcium, downregulation of α-amino-3-hydroxy-5-methyl-4-
isoxazoleproprionic acid receptor (AMPAR) subunit GluA2, and phosphorylation of GluA2 and protein kinase C alpha in vitro. A protein kinase C alpha agonist, 
12-O-tetradecanoylphorbol 13-acetate, inhibited the neuroprotective effects of ADSC-EVs on glutamate-induced R28 cells. These findings suggest that ADSC-
EVs ameliorate glutamate-induced excitotoxicity in the retina through inhibiting protein kinase C alpha activation. 
Key Words: adipose mesenchymal stem cells; calcium overload; electroretinography; excitotoxicity; extracellular vesicles; GluA2; glutamate; protein kinase C 
alpha; R28 cells; retina; retinal ganglion cell

https://doi.org/10.4103/1673-5374.369123

Date of submission: September 26, 2022 

Date of decision: December 14, 2022 

Date of acceptance: January 20, 2023 

Date of web publication: March 3, 2023 

Introduction 
Excitotoxicity is now recognized as a crucial pathophysiological mechanism 
in a multitude of retinal diseases, including glaucoma (Vernazza et al., 
2021), diabetic retinopathy (Zaitone et al., 2020; Alomar et al., 2021), and 
retinal vein occlusion (Wasilewa et al., 1976; Dionysopoulou et al., 2020). 
Memantine, an N-methyl-D-aspartic acid receptor (NMDAR) inhibitor, is the 
primary strategy for alleviating excitotoxicity in the clinic (Liu et al., 2020). 
However, oral memantine may result in side effects, including wooziness, 
headaches, constipation, and diarrhea (Kuns et al., 2022). Therefore, the 
clinical anti-excitotoxic treatment of retinal diseases remains an important 
issue (Chen and Kukley, 2020). 

In recent years, mesenchymal stem cell (MSC)-based cell transplantation 
therapy has become a promising approach for treating retinal disorders. This 
therapeutic strategy is attributed to the ability of MSCs to transdifferentiate 
into neurons, their self-renewal abilities, pro-proliferative properties, and 
neuroprotective effects (Harrell et al., 2019, 2022). Previous studies have 
identified a protective role for adipose mesenchymal stem cells (ADSCs) 
in glutamate-induced excitotoxic injury, but the mechanism is not clear 
(Zhao et al., 2009; Hao et al., 2014). Further, there are still some limitations 
of MSC therapy in the eye, including few cells integrated into the retina, 
abnormal growth, and immune rejection (Yu et al., 2020). It has been found 

that intravitreal injection of MSC-derived extracellular vesicles (EVs) reduces 
apoptosis of retinal ganglion cells (RGCs) in a rat model of acute intraocular 
hypertension (Mathew et al., 2019). Thus, it may be possible to avoid the 
limitations of ADSCs by using EVs in the treatment of retinal diseases. 

Excessive activation of ion-associated glutamate receptors is critical in the 
pathogenesis of glutamate-induced retinal damage (Connaughton, 1995; Xu 
et al., 2017). Ion-associated glutamate receptors include NMDARs, kainate 
receptors, and α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid 
receptors (AMPARs) (Dingledine et al., 1999). In contrast to NMDARs, AMPARs 
are almost impermeable to calcium ions under physiological conditions (Bowie 
and Mayer, 1995; Jacobi and von Engelhardt, 2017). AMPARs are tetrameric 
membrane proteins consisting of four different subunits, GluA1–4. Of all the 
subunit combinations, the GluA2-lacking AMPARs are permeable to calcium 
ions (Cull-Candy and Farrant, 2021). Furthermore, an increased expression 
of GluA2-lacking AMPARs was found in rat models of retinal disease (Dong 
et al., 2015). It has been reported that the GluA2 deletion mechanism is 
associated with GluA2 phosphorylation (S880). Additionally, activation of the 
protein kinase C (PKC) pathway may be a key GluA2 stimulator (Purkey and 
Dell’Acqua, 2020; Guo and Ma, 2021). Hence, upregulating GluA2 expression 
and inhibiting its phosphorylation may be a reliable approach to ameliorate 
glutamate-induced retinal damage.

1Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China; 2Hunan Province Key Laboratory of Brain 
Homeostasis, Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
*Correspondence to: Ju-Fang Huang, PhD, huangjufang@csu.edu.cn.
https://orcid.org/0000-0002-9161-1055 (Ju-Fang Huang); https://orcid.org/0000-0001-6654-8114 (Tian-Qi Duan)

Funding: This study was supported by the National Key R&D Program of China, No. 2016YFC1201800 (to JFH); the Key Research and Development Program of Hunan Province, Nos. 
2018SK2090 (to JFH), 2022SK2079 (to JFH); the Natural Science Foundation of Hunan Province, No. 2021JJ30891 (to DC); the Human Resource Bank Program of Hunan Province, No. 
2020TP3003 (to JFH); and the School-Enterprise Joint Program of Central South University, No. 2021XQLH092 (to TQD).
How to cite this article: Duan TQ, Gao ZL, Luo AX, Chen D, Tong JB, Huang JF (2023) Adipose mesenchymal stem cell-derived extracellular vesicles reduce glutamate-induced 
excitotoxicity in the retina. Neural Regen Res 18(10):2315-2320. 

Graphical Abstract

Extracellular vesicles of adipose mesenchymal stem cells (ADSCs-EVs) attenuate retinal 
excitotoxicity by regulating the phosphorylation of GluA2
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In the present study, we investigated whether ADSC-EVs inhibit glutamate-
induced retinal excitotoxic damage in vivo and in vitro, and their effects on 
GluA2 and PKC.
 
Methods   
Ethics statement
All adipose tissue collections were approved by the Medical Ethics Committee 
of Central South University (IRB No. 202111001) on November 9, 2021, 
and all volunteers signed informed consent. All animal experiments were 
approved by the Animal Ethics Committee of Central South University (No. 
CSU-2022-0088) on February 22, 2022. All animal experiments were reported 
according to the Animal Research: Reporting of In Vivo Experiments (ARRIVE) 
guidelines (Percie du Sert et al., 2020).

Experimental design 
In vivo experiments
In total, 38 specific-pathogen-free male Sprague-Dawley rats, weighing 200 g 
and aged 6–8 weeks, were purchased from the Hunan SJA Laboratory Animal 
Co., Ltd. (Changsha, Hunan, China) (license No. SYXK (Xiang) 2020-0019). 
The animals were housed in a specific-pathogen-free environment, under a 
12-hour light/dark cycle, 60 ± 5% humidity, and a temperature of 23 ± 1°C. 
They were randomly divided into six groups with the following treatments: 
Con group: intravitreal injection of 4 μL phosphate buffered saline (PBS) (n 
= 8); Glu group: intravitreal injection of 4 μL 100 mM glutamate (Aladdin, 
Shanghai, China) (n = 8); Glu + EVs group: intravitreal injection of 3 μL of 1 × 
109 particles/mL ADSC-EVs, followed by intravitreal injection of 4 μL of 100 
mM glutamate 1 hour later (n = 8); Glu + PBS group: intravitreal injection of 3 
μL PBS, followed by intravitreal injection of 4 μL of 100 mM glutamate 1 hour 
later (n = 8); PKH26-Control group: intravitreal injection of 3 μL PBS (n = 3); 
and PKH26-labeled group: intravitreal injection of 3 μL of 1 × 109 particles/mL  
PKH26-labeled ADSC-EVs (n = 3). Intravitreal injection was performed by 
inserting the needle 1 mm outside the limbus using a micro syringe (Hamilton, 
Reno, NV, USA) after the pupil was dilated with compound tropicamide 
(Bausch & Lomb, Jinan, Shandong, China). Animals were killed 24 hours after 
intravitreal injection (Sisk and Kuwabara, 1985) (Figure 1).

tissue of healthy adults aged 18–50 years old collected from the Third 
Xiangya Hospital of Central South University was mechanically chopped 
before centrifugation at 450 × g for 5 minutes. Afterward, we collected the 
middle layer of the three-layer fraction, which is the stromal vascular fraction 
(Hearnden et al., 2021). Then the stromal vascular fraction was digested with 
0.1% collagenase I (Servicebio, Wuhan, China; GC305013) in a 37°C incubator 
with 225 r/min shaking for 30–60 minutes. We filtered the digested tissue 
solution with a 40-µm filter and centrifuged it at 450 × g for 10 minutes. 
The pellet was resuspended in a low glucose Dulbecco’s modified Eagle’s 
medium (Hyclone, Logan, UT, USA; Cytiva SH30021.01) containing 10% fetal 
bovine serum (ExCell Bio, Suzhou, China). The cells were stored in a sterile 
moist environment of 37°C and 5% carbon dioxide. After reaching 80–100% 
confluence, we passaged the cells with 0.25% trypsin (Gibco, Grand Island, 
NY, USA). 

After the third generation of cell transmission, we identified the characteristics 
and differentiation ability of the cells. Initially, cell morphology was observed 
by light microscopy, and then cells were digested with trypsin (Gibco), 
resuspended in culture medium, and transported at 4°C for flow cytometry 
(Changsha Golden Medical Clinical Laboratory Center, Changsha, China). 
In addition, we also performed lipogenic and osteogenic differentiation 
assays on ADSCs (Cyagen Biosciences, Santa Clara, CA, USA; HUXMD-90031, 
HUXMD-90021). Briefly, we first inoculated the cells in a 6-well plate coated 
with 1% gelatin, and when the cell fusion reached 70%, 2 mL of the prepared 
medium for differentiation induction was added to the wells. After 2–4 weeks, 
the cells were stained with Alizarin Red and Oil Red O (Cyagen Biosciences) to 
observe the morphological changes and growth.

Extraction and identification of ADSC-EVs
In accordance with previous methods (Dou et al., 2020; Yang et al., 2020), 
we obtained EVs by ultrafiltration combined with a polymer precipitation 
strategy. Briefly, cells were cultured for more than 48 hours in a serum-free 
medium (Hyclone; Cytiva SH30021.01). Then we removed cells and debris by 
centrifugation (200 × g, 10 minutes, 4°C). The supernatant was concentrated 
using a 0.45-μm filter and a 100-kDa ultrafiltration tube (Millipore, Burlington, 
MA, USA; UFC9100, Amicon Ultra-15). Thereafter, EVs were pelleted by 
low-speed centrifugation (1500–3000 × g) after overnight incubation with 
polyethylene glycol at 4°C. Then, precipitates were resuspended in sterile 
PBS and EVs were obtained for further applications. Finally, we performed 
nanoparticle tracking analysis (Particle Metrix, Munich, Germany; ZetaView), 
electron microscopy, and western blot to identify the concentration, size, 
shape, and surface markers of ADSC-EVs.

ADSC-EVs uptake by rat retina and R28 cells
EVs were labeled according to the instructions of the PKH26 Red Fluorescent 
Cell Ligation Kit (Umibio, Shanghai, China; UR52302). Briefly, EVs were 
suspended in 10 μL diluted PKH26 solution (1 μL PKH26 and 9 μL PBS) for 10 
minutes. After that, we washed the mixture in 10 mL 1× PBS and concentrated 
it in a 100-kDa ultrafiltration tube (3000 × g, 20 minutes, 4°C). The pellets 
were resuspended and added to the R28 cells at 25 μg/mL. After incubating 
with PKH-labeled EVs for 8 hours, the cells were stained with 4′,6-diamidino-
2-phenylindole (DAPI, Solarbio, Beijing, China) and observed by fluorescence 
microscope (Zeiss, Jena, Germany, AXIO Vert.A1). 

For the in vivo experiments, 24 hours after the intravitreal injection of 3 μL 
1 × 109 particles/mL PKH26-labeled EVs, the rats were anesthetized with 
an intraperitoneal injection of 2% sodium pentobarbital (40 mg/kg; FWD 
Chemical Company, Shanghai, China) and perfused with 4% paraformaldehyde 
via myocardium. Then, the eyeballs were removed and fixed in ocular 
fixative (Servicebio, G1109) for more than 1 day, dehydrated in 30% sucrose, 
embedded with optimal cutting temperature compound (Sakura, Tokyo, 
Japan; 4583), and then stored at –80°C. The eyeballs were sectioned sagittally 
with a cryostat (Leica, CM1520) at a thickness of 8 μm. After DAPI staining, 
the sections were observed using a fluorescence microscope.

Hematoxylin and eosin staining
After 2% sodium pentobarbital anesthesia and 4% paraformaldehyde cardiac 
perfusion as above, bilateral eyeballs were removed with forceps and then 
fixed in an ocular fixative for more than 1 day. Subsequently, we embedded 
the eyeballs in paraffin and then obtained continuous sagittal sections (4 μm 
thick), including the optic nerve head. After staining with hematoxylin and 
eosin (Servicebio, G1003), we observed the morphology of retinal layers using 
a light microscope (Toupcam, Hangzhou, China) analyzed by ImageJ software 
and Adobe Illustrator 26.0 (San Jose, CA, USA) software. The number of RGCs, 
and thickness of the inner plexiform layer and inner nuclear layer in one 
paraffin section per eye were recorded at 1000-μm intervals beginning at the 
optic papilla.  

Electroretinography
Electroretinography (ERG) waveforms were recorded 24 hours after modeling 
by an eye electrophysiological detector (Roland, Brandenburg, Germany; 
RETI port/scan 21). Before dark-adapted ERG assays, rats were maintained 
in a dark environment for 24 hours. After anesthetization with 1% sodium 
pentobarbital (50 mg/kg), ERG data were collected by full field stimulation. 
The original data of scotopic 3.0 and 3.0 cd s/m2 oscillatory potential ERG 
were recorded and analyzed by Microsoft Excel 2016 (Redmond, WA, USA) 
software. Next, we measured the a-wave amplitude from the prestimulated 
baseline to the wave trough. The b-wave amplitude was measured from 
the trough of the a-wave to the peak of the waveform. The analysis and 
description of the scotopic 3.0 oscillatory potentials (SOPs) were mainly based 

Figure 1 ｜ Schematic of the experimental timeline of in vitro and in vivo modeling.
In the in vitro model (top panel), R28 cells were pretreated with ADSC-EVs (or PBS for 
control) or ADSC-EVs and agonists for 1 hour before establishing the glutamate induction 
model. The control group was kept under normal culture conditions for the same length 
of time (8 hours). In the in vivo model (bottom panel), ADSC-EVs (or PBS for control) were 
injected into the vitreous cavity 1 hour before glutamate intravitreal injection. In the 
control group, the same volume of PBS (4 μL) was injected intravitreally into the vitreous 
cavity for the same length of time (24 hours). ADSC-EVs: Adipose mesenchymal stem cell-
extracellular vesicles; PBS: phosphate buffered solution; R28: rat retinal precursor cells; 
SD: Sprague-Dawley.

In vitro experiments
Rat retinal precursor (R28) cells were provided by Central South University. 
This cell line had been characterized by short tandem repeat analysis and 
confirmed according to the ICLAC Database of Cross-Contaminated or 
Misidentified Cell Lines. In previous studies (Lee et al., 2020; Huang et al., 
2021; Yao et al., 2022; Yan et al., 2023), the R28 cell line has been widely 
used to explore the neuroprotection and pathological mechanism of RGCs 
in vitro. To determine the optimal time point for glutamate damage on R28 
cells, we treated cells with 34 mM glutamate for 4, 6, 8, 10, and 12 hours. To 
determine the most effective concentration of ADSC-EVs to protect R28 cells, 
we pretreated cells with 5 or 25 μg/mL ADSC-EVs for 1 hour. We pretreated 
cells with 10, 25, 50, 75, and 100 ng/mL 12-O-tetradecanoylphorbol 
13-acetate (TPA; Beyotime, Shanghai, China) for 1 hour to determine the 
optimal concentration of TPA, which activates the PKC pathway. In vitro 
experiments included in five groups with the following treatments: Con 
group: cells were cultured under normal conditions; Glu group: cells were 
treated with 34 mM glutamate; Glu + EVs group: cells were pretreated with 
ADSC-EVs for 1 hour before the addition of glutamate; Glu + PBS group: cells 
were pretreated with PBS before the addition of glutamate; and Glu + TPA + 
EVs group: cells were pretreated with TPA and ADSC-EVs for 1 hour before the 
addition of glutamate. We cultured the cells at least three times, and three 
dishes were used for each group during each culture (Figure 1). 

Culture and identification of ADSCs 
Human-derived ADSCs were isolated and cultured using the methods 
described in a previous study (Ahmadian Kia et al., 2011). Briefly, adipose 
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on the peaks of the three main oscillatory waveforms in the signal (McCulloch 
et al., 2015).

Propidium iodide staining
Positive propidium iodide (PI) staining is regarded as a marker of necrotic 
cells (Crowley et al., 2016). After washing twice with PBS, the R28 cells 
were incubated in PI-dye solution (10 μg/mL; Sigma, St. Louis, MO, USA, 
Cat# P4170) for 15 minutes. Subsequently, the cells were fixed with 4% 
paraformaldehyde for 20 minutes and nuclei were stained with DAPI for 5 
minutes. Finally, the ratio of necrotic cells was calculated as PI-positive cells/
DAPI-positive cells under a microscope.

Calcium measurement 
After washing three times with calcium-free Hank’s balanced salt solution 
(Solarbio), the cells were labeled by 4 µM fluorescent probe (Fluo-4 
AM, Solarbio) for 30 minutes at 37°C. Then, the cells were fixed with 4% 
paraformaldehyde and stained with DAPI. The Fluo-4 AM signal was observed 
using a fluorescence microscope. The fluorescence signal intensity values of 
Fluo-4 AM were obtained by dividing the integrated density by the number 
of cells, as described in a previous study (Wang et al., 2019). ImageJ v.1.5.1 
(National Institutes of Health, Baltimore, MD, USA) software (Schneider et al., 
2012) was used for integrated density measurement and cell counting.

Western blot analysis
The R28 cells were lysed for 30 minutes in radioimmunoprecipitation 
assay lysis buffer (CWBIO, Beijing, China) with the addition of protease 
and phosphatase inhibitors (Roche, Basel, Switzerland). After performing 
electrophoresis and electroblotting, we blocked the nitrocellulose membranes 
(Pall, New York, NY, USA, Cat# 66485) in 5% nonfat milk (MengNiu, Hohhot, 
Inner Mongolia, China) or QuickBlockTM Blocking Buffer (Beyotime, P0252) 
at room temperature (approximately 25°C) for 1–2 hours. The samples 
were incubated with the following primary antibodies overnight at 4°C: 1) 
Extracellular vesicles and MSC surface markers: polyclonal rabbit anti-CD81 
(1:1000; GeneTex, Irvine, CA, USA, Cat# GTX101766, RRID: AB_10618892) 
and anti-CD63 (1:1000; Wanleibio, Shenyang, Liaoning Province, China, 
Cat# WL02549, RRID: AB_2910631); 2) Key regulatory proteins of AMPAR: 
polyclonal rabbit anti-GluA2 (1:1000; Abclonal, Wuhan, China, Cat# A0111; 
RRID: AB_2756954), polyclonal rabbit anti-phospho-GluA2 (Ser 880; 1:500; 
Affinity Bioscience, Beijing, China, Cat# AF3307, RRID: AB_2834726), 
polyclonal rabbit anti-PKC alpha (1:1000; Wanleibio, Cat# WL02234, RRID: 
AB_2925211), and monoclonal rabbit anti-phospho-PKC alpha (1:10,000; 
Abcam, Cambridge, UK, Cat# ab32502, RRID: AB_777295); 3) Apoptosis-
related proteins: polyclonal rabbit anti-cleaved caspase 3 (1:1000; Cell 
Signaling Technology, Danvers, MA, USA, Cat## 9661, RRID: AB_2341188); 
and monoclonal rabbit anti-β-tubulin (1:10,000; Proteintech, Wuhan, China, 
Cat# 66240-1-Ig, RRID: AB_2881629). After washing in PBS-Tween 20 (0.05%), 
the membranes were incubated with goat anti-rabbit IgG (1:10,000; Abbkine, 
Wuhan, China, Cat# A25222, RRID: AB_2922982) at room temperature for 2 
hours. The immunoreactive band was then visualized using a high sensitivity 
chemiluminescent reagent (CWBIO). The grayscale intensities quantified with 
ImageJ software were normalized to the control and β-tubulin. 

Immunofluorescence staining
R28 cells were fixed for 20 minutes with 4% paraformaldehyde. Then, the 
cells were washed three times with 0.01 M PBS. The cells were blocked for 
1 hour in 5% bovine serum albumin, according to a previous study (Dong et 
al., 2015). Then, R28 cells were incubated with polyclonal rabbit anti-GluA2 
(1:50; ABclonal, Cat# A0111, RRID: WX924262) overnight at 4°C and Alexa 
Fluor 594-labeled goat anti-rabbit IgG (1:200; Abcam, Cat# ab150160, RRID: 
AB_2756445) for 2 hours at room temperature. After staining with DAPI 
for 5 minutes, images were acquired with a laser-scanning microscope and 
analyzed by ImageJ software. 

Statistical analysis 
No statistical methods were used to predetermine sample sizes; however, our 
sample sizes were similar to those reported in previous publications (Charles-
Messance et al., 2020; Fang et al., 2023). No animals or data points were 
excluded from the analysis. All numerical data were recorded by at least two 
researchers and were analyzed via one-way analysis of variance followed 
by Brown-Forsythe test using SPSS 22.0 statistical software (IBM, Armonk, 
NY, USA). P < 0.05 was set as the significance threshold. GraphPad Prism 5 
software (GraphPad Software, San Diego, CA, USA, www.graphpad.com) was 
used to create the bar graphs. 

Results
Identification of ADSCs and ADSC-EVs
ADSCs are characterized by adherent growth, the positive expression of 
CD105, CD73, and CD90, the negative expression of CD45, CD34, and CD19, 
and adipogenic and osteogenic abilities (Dominici et al., 2006). We used 
primary ADSCs from human adipose tissue, and found that 3rd generation 
ADSCs presented a spindle-shaped morphology (Figure 2A). More than 95% 
of cells expressed the positive markers (CD73, CD105, and CD90), and less 
than 5% of cells expressed the negative markers (CD34, CD45, and CD19) 
(Figure 2D). The cells had adipogenic and osteogenic abilities (Figure 2B and 
C). In addition, EVs were enriched from the medium supernatant of ADSCs. 
These EVs had a cup shape, with a size distribution peak at 136.87 ± 4.52 
nm, and were positive for surface markers CD81 and CD63 (Figure 2E–G), 
consistent with the characteristics of exosomes (Phinney and Pittenger, 2017). 
These results confirmed the successful isolation of ADSCs and their EVs.

ADCS-EVs ameliorate the glutamate-induced damage of the rat retina
To test the effects of ADSC-EVs on glutamate-induced retinal damage, we 
injected ADSC-EVs and glutamate into the vitreous sequentially with a 1-hour 
interval. We found that PKH-26-labeled ADSC-EVs were primarily distributed 
in RGCs (Figure 3A). Compared with those in the Con group, the number of 
RGCs (P < 0.001; Figure 3B and C), inner plexiform layer thickness (P < 0.001, 
Figure 3B and D), inner nuclear layer thickness (P < 0.001; Figure 3B and E), 
and the amplitudes of the a- (P < 0.001), b- (P < 0.001), and SOP-waves (P < 
0.001; Figure 3F–J) in ERG were decreased significantly in the Glu group; these 
alterations were markedly ameliorated in the Glu + EVs group. These findings 
suggest that ADSC-EVs decreased glutamate-induced inner retinal damage. 

ADCS-EVs reduce intracellular calcium concentration and GluA2 expression 
in the glutamate damage model
Increased intracellular calcium concentration plays a vital role in glutamate 
damage (Hartwick et al., 2008). To assess the effects of ADSC-EVs on the 
elevated intracellular calcium concentration, R28 cells were treated with EVs 
for 1 hour before the glutamate supplement. PKH-26-labeled ADSC-EVs were 
distributed mostly in the cytoplasm of R28 cells (Figure 4A). After application 
of 34 mM glutamate for 8 hours, more than 50% of R28 cells were necrotic (P 
< 0.001; Additional Figure 1A and B) and intracellular calcium concentration 
was increased (P < 0.001) compared with control group; these changes were 
considerably ameliorated in the Glu + EVs group (Additional Figure 1C–F and 
Figure 4B and C). 

Additionally, we observed the effect of ADSC-EVs on AMPAR subunit GluA2 
expression and phosphorylation in the vitro model of glutamate damage. 
Compared with the Con group, glutamate damage led to decreased surface 
GluA2 expression (Figure 4D) and increased GluA2 phosphorylation in R28 
cells (P < 0.001; Figure 4E and F); the changes were significantly ameliorated 
in ADSC-EV-treated R28 cells (P < 0.001; Figure 4D–F) compared with 
Glu group. The results suggested that ADSC-EVs reduced the intracellular 
calcium concentration, upregulated GluA2 expression, and inhibited GluA2 
phosphorylation in the in vitro glutamate damage model.

PKC-α activation reduces the effects of ADSC-EVs on GluA2 phosphorylation 
in glutamate-treated R28 cells
Previous research has indicated that PKC-α plays a crucial role in regulating 
GluA2 phosphorylation (Kou et al., 2019). To investigate the mechanism by 
which ADSC-EVs regulate GluA2 phosphorylation, we activated PKC-α with 
PKC agonist TPA (100 ng/mL, 1 hour) in R28 cells (Figure 5A and B). ADSC-
EVs inhibited the phosphorylation of PKC-α and GluA2 in the Glu + EVs group 
compared with Glu group (both P < 0.001); these changes were significantly 
reversed in the Glu + TPA + EVs group compared with Glu+EVs group (PKC-α: 
P < 0.01, GluA2: P < 0.001; Figure 5C–E). The results indicated that ADSC-EVs 
inhibited PKC-α activation and modulated GluA2 phosphorylation. 
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Figure 2 ｜ Identification of ADSCs and ADSC-EVs.
(A) Morphology of ADSCs was a spindle shape. (B, C) After induced differentiation, lipid 
drops (stained by oil red O) and calcium nodules (stained by Alizarin red) were present 
in cells. (D) Surface markers of ADSCs were analyzed by flow cytometry. (E) Particle size 
distribution measured by NTA. (F) Morphologic observation of the EVs under electron 
microscopy. The EVs had a cup shape appearance. Scale bars: 200  μm (A, F) and 100  μm 
(B, C). (G) Protein expression of the surface markers CD63 and CD80 on EVs and ADSCs 
was detected by western blot analysis. ADSCs: Adipose mesenchymal stem cell; EVs: 
extracellular vesicles; NTA: nanoparticle tracking analysis; PKH-26: red PKH membrane dye.
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Figure 3 ｜ ADCS-EVs reduce glutamate-
induced morphological and functional 
damage in rat retina.
(A) The PKH-26-labeled exosomes 
(white arrows) in retinas were observed 
using a fluorescence microscope. (B–E) 
Representative images and quantitative 
analysis of hematoxylin and eosin (HE) 
staining in the retina (mean ± SD, n 
= 4 rats per group). RGC number, IPL 
thickness, and INL thickness were 
decreased significantly in the Glu group; 
the alterations were markedly improved 
in Glu + EVs group. The black arrows 
indicate RGCs. Scale bars: 10 μm (A), 50 
μm (B). (F) Representative a- and b-waves 
under different conditions. The a- and 
b-wave amplitudes were significantly 
decreased in the Glu group, and were 
markedly improved in the Glu + EVs 
group. (G, H) Statistical analysis of the a- 
and b-wave amplitudes. (I) Representative 
sum OPs in scotopic oscillatory potential 
ERG 3.0 under different conditions. The 
SOP-wave amplitudes were significantly 
decreased in the Glu group, and were 
markedly improved in the Glu + EVs 
group. (J) Statistical analysis of the SOP-
wave amplitudes (mean ± SD, n = 4 rats 
per group). *P < 0.05, **P < 0.01, ***P 
< 0.001 (one-way analysis of variance 
followed by Brown-Forsythe test). 
Con: Intravitreal injection of PBS; Glu: 
intravitreal injection of glutamate; Glu 
+ EVs: intravitreal injection of ADSC-
EVs before the glutamate damage; 
Glu + PBS: intravitreal injection of PBS 
before the glutamate damage. ADSC-
EVs: Adipose mesenchymal stem cells 
derived extracellular vesicles; DAPI: 
4′,6-diamidino-2-phenylindole; ERG: 
electroretinogram; GCL: ganglion cell 
layer; INL: inner nuclear layer; IPL: inner 
plexiform layer; ONL: outer nuclear 
layer; OP: oscillatory potential; PBS: 
phosphate buffered solution; RGC: retinal 
ganglion cell; SOP: scotopic 3.0 oscillatory 
potential.

Figure 4 ｜ ADSC-EVs reduce intracellular 
calcium concentration by regulating GluA2 
expression in vitro.
(A) The PKH-26-labeled exosomes (red, 
marked with white arrows) in R28 cells. (B) 
Concentration of calcium ions (white triangles), 
represented by Fluo-4 signal (green); nuclei 
stained with DAPI (blue). Glutamate increased 
the intracellular calcium concentration, 
which was considerably ameliorated in the 
Glu + EVs group. (C) Quantitative analysis of 
Fluo-4 AM fluorescence signal intensity. (D) 
Immunofluorescent labeling of GluA2 (Alexa 
Fluor 594, red) on the cell membrane; nuclei 
stained with DAPI (blue). The surface GluA2 
expression in the Glu group was decreased, 
which was significantly ameliorated in the Glu + 
EVs group. Scale bars: 10 μm (A, B), 20 μm (D). (E) 
Western blot of p-GluA2 and GluA2 in R28 cells 
after treatment with glutamate and ADSC-EVs. 
(F) The average ratio of p-GluA2/GluA2. Data 
presented as mean ± SD. ***P < 0.001 (one-way 
analysis of variance followed by Brown-Forsythe 
test). Con: R28 cells treated with nothing to add; 
Glu: R28 cells treated with glutamate; Glu + EVs: 
R28 cells pre-treated with ADSC-EVs before the 
glutamate damage; Glu + PBS: R28 cells pre-
treated with PBS before the glutamate damage. 
ADSC-EVs: Adipose mesenchymal stem cell-
extracellular vesicles; DAPI: 4′,6-diamidino-2-
phenylindole; p-GluA2: phospho-GluA2; PBS: 
phosphate buffered solution; R28: rat retinal 
precursor cells.
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Discussion
Excitotoxicity, a common secondary injury after retinal disease, is significantly 
associated with the prognosis of retinal structure and function (Dionysopoulou 
et al., 2020; Vernazza et al., 2021). Our study aimed to explore whether 
intravitreal injection of ADSC-EVs decreased glutamate-induced retinal 
damage. The results indicated that intravitreal-injected ADSC-EVs were taken 
up by RGCs within 24 hours, and the glutamate-induced morphological 
and functional abnormalities in the inner retinal layers were significantly 
ameliorated. This is consistent with previous studies (Papazian et al., 2018; 
Zhuang et al., 2022) on the effects of MSC transplantation on excitotoxicity 
in a rat controlled cortical impact-induced TBI model and an NMDA-induced 
mouse cortical neuron damage model. A recent review indicated that 
intravitreal injection of MSCs in ocular diseases may result in undesirable 
differentiation and proliferative vitreoretinopathy (Yu et al., 2020). These side 
effects were not observed in our study. These findings suggest that, as an 
alternative to stem cell therapy, intravitreal injection of ADSC-EVs is a simple 
and effective intervention for ameliorating retinal excitotoxicity. 

Previous studies have shown that MSC-EVs carry various bioactive cargos 
such as proteins, microRNAs, lipids, and mRNAs (Bang and Thum, 2012). 
When MSC-EVs are taken up by targeted cells, these components modulate 
targeted cells through a variety of pathways. The reported effects include 
NLRP3 inflammasome inhibition (Zhang et al., 2022), regulation of microglial 
polarization (Xin et al., 2020), anti-apoptosis (Cui et al., 2022), and promotion 
of regeneration (Demyanenko et al., 2022). However, the molecular 
mechanism of glutamate-induced excitotoxicity remains elusive. Here, we 
found that ADSC-EVs exhibited anti-excitotoxic and neuroprotective effects 
on glutamate-induced retinal damage. Intravitreal injection of ADSC-EVs 
decreased the intracellular calcium concentration and upregulated surface 
GluA2 expression, suggesting that ADSC-EVs inhibited the calcium overload 
by upregulating the GluA2-containing AMPARs. GluA2 phosphorylation is 
an essential event that decreases the expression of surface GluA2 (Guo and 
Ma, 2021). Furthermore, GluA2 phosphorylation induced by PKC-α activation 
was inhibited by ADSC-EVs. These findings support that the regulatory 
role of ADSC-EVs on the PKC-GluA2 signaling pathway may be an essential 
mechanism in its anti-excitotoxic effect. 

In recent years, matrix-bound nanoparticles, localized in the bioscaffolds of 
the extracellular matrix, have also been considered as an effective EV-based 
therapeutic. The extracellular matrix provides the structural basis for cell 
growth and repair (Swinehart and Badylak, 2016; Mathivanan, 2017), and 
matrix-bound nanoparticles carry bioactive factors that inhibit inflammatory 
responses (Huleihel et al., 2017) and promote regeneration (van der Merwe et 
al., 2017). A recent study found that matrix-bound nanoparticles modulated 
ischemia-induced RGC injury by intravitreal injection (van der Merwe et al., 
2019). Our study indicated that ADSC-EVs regulate the PKC-GluA2 signaling 
pathway and inhibit retinal excitotoxic injury. Future studies should investigate 
whether the effectiveness of ADSC-EVs could be improved by modifying 
extracellular matrix bioscaffolds with ADSC-EVs (Hao et al., 2020a, b).

This study used only male rats in the in vivo experiments. Although most 
previous studies have been performed in male experimental animals (Beery 
and Zucker, 2011), a recent study reported that testosterone injection can 
cause open-angle glaucoma and ischemic retinal disease (Dahshan et al., 
2022). To avoid bias in the results due to sex and to analyze the damage in the 
glutamate model and the ADSC-EV therapeutic effects more comprehensively, 
it is necessary to include female rats in future studies. In addition, only 24 
hours were observed after in vivo intervention with ADSC-EVs. An extended 
observation period is needed to further investigate the efficacy and side 
effects of ADSC-EVs. This study did not investigate which components of 
ADSC-EVs modulate the PKC-GluA2 pathway, which should be investigated in 
future studies.

In conclusion, our results indicated that ADSC-EVs ameliorated glutamate-
induced retinal damage by inhibiting the phosphorylation of GluA2 and 
PKC-α. These findings suggest the potential of ADSC-EVs for use in the clinical 
therapy of retinal diseases.
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